eldorado.tu-dortmund.de/server/api/core/bitstreams/c1c7ee12-8eb8-4c70-897b-6aa48a45c87c/content
Figure 3.1).
30
(u1u2u3u4,v1)
δ ∗(q0, \u1u2u3u4) ∈ S (u1,av1)
p = δ ∗(q0, \u1)
(u1u2u3,v2v1)
δ ∗(q0, \u1u2u3) ∈ S (u1u2,av2v1)
p = δ ∗(q0, \u1u2)
(a) A possible play of σ
(u1u3,v1)
δ ∗(q0, \u1u3) ∈ S (u1,av1) [...] Π(σAq ,τ1,w1) contains the configuration (u1,a1v1) with Aq-state q1 = δ ∗(q,u1)
and, by maximality of u1, the play Π(σAq1 ,τ1[u1],a1) is infinite. Thus, δ (q1,a1) = ⊥
and, letting τ2 = τ1[u1â1] and w2 [...] plays Π1 = (K1 0 ,K
1 1 ,K
1 2 , . . .) and Π2 =
(K2 0 ,K
2 1 ,K
2 2 , . . .) of σk such that K1
n1 = (u1,av1), K2
n2 = (u2,av2), q = δ ∗(q0, \u1) = δ ∗(q0, \u2) and
36
σk(u1,a) 6= σk(u2,a) for some n1,n2 …